using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Drawing2D; using System.Text; namespace HTEXLib.Models.Inner { public static class Globals { public const int px12700 = 12700; //8000; public const int px914400 = 914400; public const int px96 = 96; public const int PercentageConstant = 100000; public const int FontPoint = 100; public const int DefaultBulletSize = 12; //public const string STORAGE_DIR = "F:\\ppt-path"; public const int degree = 4; public static readonly Dictionary replaceKP = new Dictionary { { "#x200e", "‎" }, { " ", " " }, { "‎", "‎" }, { "#x200e;", "‎" },{ "&‎;", "‎" },{ "‎","" } }; public const string OMML2MML = " ˘ ¸ ` - . ˙ ˝ ´ ~ ˜ ¨ ˇ ^ ¯ _ true 0 left right 0 0 0 0in 0in 0in 0 true false off off off 1 0 / true 0pt right left right left 1 0 ¯ _ 0 0 normal monospace sans-serif-italic bold-sans-serif sans-serif-bold-italic sans-serif bold-fraktur fraktur double-struck bold-script script bold italic normal bold-italic bold normal normal italic italic bold 0 0 1 1 0 1 0 1 0 1 0 1 box left right top bottom 1 0 -1 0 1 1 0 "; public const string presetShapeDefinitons = " "; public const string MMLTEX = " $ $ \\[ \\]"; public const string tokens = " \\textcolor{red}{ } 1 and not(@mathvariant)\"> \\mathrm{ } \\mathrm{ } \\left \\right \\text{ } \\phantom{\\rule [- ] { 0ex }{ 0ex }} '' '' \\colorbox[rgb]{ }{$ \\textcolor[rgb]{ }{ \\mathrm{ \\mathbf{ \\mathit{ \\mathit{ The value bold-italic for mathvariant is not supported \\mathbb{ \\mathfrak{ The value bold-fraktur for mathvariant is not supported \\mathcal{ \\mathcal{ The value bold-script for mathvariant is not supported \\mathfrak{ \\mathsf{ \\mathsf{ The value bold-sans-serif for mathvariant is not supported \\mathsf{ The value sans-serif-italic for mathvariant is not supported \\mathsf{ The value sans-serif-bold-italic for mathvariant is not supported \\mathtt{ { Error at mathvariant attribute } } $} , , , , 0,1,1 0,0,0 0,0,1 1,0,1 .5,.5,.5 0,.5,0 0,1,0 .5,0,0 0,0,.5 .5,.5,0 .5,0,.5 1,0,0 .75,.75,.75 0,.5,.5 1,1,1 1,1,0 Exception at color template Exception at Hex2Decimal template "; public const string glayout = " \\genfrac{}{}{ ex 0ex .05ex .2ex }{}{ \\frac{ \\hfill \\hfill }{ \\hfill \\hfill } \\raisebox{1ex}{$ $}\\!\\left/ \\!\\raisebox{-1ex}{$ $}\\right. \\sqrt[ ]{ } exception 25: \\text{exception 25:} \\sqrt{ } \\left \\ \\left. \\left( , string-length($sep)\"> \\right \\ \\right. \\right) \\phantom{ } \\overline{ \\hspace{.2em}|} \\sqrt{ } \\overline{) } {\\displaystyle { \\textstyle \\scriptstyle \\scriptscriptstyle \\colorbox[rgb]{ }{$ \\textcolor[rgb]{ }{ } $} } } "; public const string scripts = " \\overline{ } \\overbrace{ } \\overleftarrow{ } \\overrightarrow{ } \\overleftrightarrow{ } \\underline{ } \\underbrace{ } \\underleftarrow{ } \\underrightarrow{ } \\underleftrightarrow{ } _{ }^{ } \\underset{ }{\\overset{ }{ }} \\overline{ } \\overbrace{ } \\overleftarrow{ } \\overrightarrow{ } \\overleftrightarrow{ } \\tilde{ } \\check{ } \\dot{ } \\ddot{ } \\widehat{ \\hat{ } ^{ } \\stackrel{ }{ } \\underline{ } \\underbrace{ } \\underleftarrow{ } \\underrightarrow{ } \\underleftrightarrow{ } _{ } \\underset{ }{ } { }_{ }^{ } { }^{ } { }_{ } {}_{ } {}^{ } 2 and local-name(.)!='none'\"> {} _{ } ^{ } 1]\"> 2 and local-name(.)!='none'\"> {} _{ } ^{ } "; public const string tables = " \\multicolumn{ }{c}{ } 0\"> & \\hfill \\hfill 0\"> & 0\"> \\\\ \\begin{array}{ | $numbercols\"> | } \\hline \\\\ \\hline \\end{array} "; public const string entities = " 0\"> 0\"> "; public const string cmarkup = " + i / _{} e^{i } E 1\"> mathrm{} ( 1]\"> , ) () left( left[ , right) right] left{right} ^{(-1)} mapsto circ mathrm{id} mathop{mathrm{ }} begin{cases} end{cases} & text{if $ $} & text{otherwise} leftlfloorfrac{ }{ }rightrfloor ! left( frac{ }{ } right) { mid , } - - ( - + ) ^{ } mod ( times ) sqrt [ ] { } gcd land lor mathop{mathrm{xor}} neg implies , colon left| right| overline{} Re Im lfloor rfloor lceil rceil = neq > < ge le equiv approx | int _{ } ^{ } ,d ^prime frac{ d^{ } }{d ^{ } d }{d } D_{ , } frac{partial^{ + + } }{ partial ^{ } } , mathop{mathrm{div}} nabla^2 {} left[right] colon , cup cap in notin subseteq subset nsubseteq notsubset setminus | | times ^{ } sum prod _{ = } ^{ } lim_{ } to searrow nearrow rightarrow to mathrm{ ,} mathrm{ } e^{} lg log_{ } langle , rangle sigma sigma( )^2 langle ^{ }rangle _{ } left(begin{array}{c} end{array}right) begin{pmatrix} end{pmatrix} & det begin{vmatrix} end{vmatrix} ^T _{ , } cdot otimes mathbb{Z} mathbb{R} mathbb{Q} mathbb{N} mathbb{C} mathbb{P} e i NaN mbox{true} mbox{false} emptyset pi gamma infty ( ) ( ) "; public const string UnsupportedImage = "/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAIQAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMAEAsMDgwKEA4NDhIREBMYKBoYFhYYMSMlHSg6Mz08OTM4N0BIXE5ARFdFNzhQbVFXX2JnaGc+TXF5cGR4XGVnY//bAEMBERISGBUYLxoaL2NCOEJjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAeUDjAMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAABQYCAwQBB//EAFEQAAICAQIDBQIJBwoDBgYDAQABAgMEBRESITEGE0FRYRQiMnGBkZKhscHRFRY1UlRycyM0NkJTYpOy4fAzgqMkQ1VjdPElRGSDouJFZdLC/8QAGQEBAAMBAQAAAAAAAAAAAAAAAAECBAMF/8QAKxEBAAICAgICAAUEAwEAAAAAAAECAxEhMQQSMkEFIkJRYRNScZFDobGB/9oADAMBAAIRAxEAPwC+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAarMmmr4U1v5LmytrRWNzKYiZ6bQcdea7rlXVDk+rl5HYRTJW8bqm1Zr2AAuqAAAAAAAAAGt31KfA7I8XluRMxHaYiZbAASgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA02ZdNXwppvyXMra1axu06TETPTcCOs1J9KobesjlsyLbfhzbXl0Rlv5uOvx5dq4LT2lbMqmr4U035LmctmpPpVX8siPBjv5mS3XDtXBWO22zJut+HN7eS5I1ALbdb9PEyzabTuZdYiI6Sem08NTsa5y6fEdvQi3n2NKFMFFdF4s7Maicf5S+TnZ6v4J63j5K6imON6+2PJWd+1nQADY4gAAAAADmnn0V2OuxyjJdd4mccvHkuVsTn/Vx717Qt6W7059Q9oit4y/kvHh6r4yNJ1WVyXKcH8qODLwuHeylbx8YrwMHlYJtPvWdtGLJEfllpozLaeW/FHyZI0ZdV3JPhl+qyGBnxeVfHx3DpfFWywAiKM62rZS9+Pk+pI0ZVV/wZbS/VfU9PF5NMnEcSy3xWq3AA0OYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi3Mor6z3flHmVtetY3adJiJnpvBG26lJ8q4Jer5nLZfbb8Obfp4GS/m46/Hl2rgtPaVsy6K+s035R5nLZqUnyqgl6yOAGO/mZLdcO1cFY7bLMi234c215eBrAMs2m07l2iIjoABAANpdTF2JdOYTEbZHsU5SUYrdvojS5t+huxcp403JVxk34vqTWazbVp1BNZ1wlcTEVC4pc7H9R1EdDV638OqUfie50Qz8af/eqP7y2PaxZcEV9aTDDfHk3u0OkHkZRmt4yUl5p7nppcQAxnxbe40n6rkJGQOOzOnQ9siiUV+tF7oyhqGNP/ALzhf95bHGM+PepnU/zw6f0763pq1TF72vvYL34dfVEQm10LJGcLF7k4yXo9yF1DG9nu3iv5OfNenoYPNw/8tf8A60+Pk/RZojNPryNik10b+RnOeqTXQ86LNU1bgYRmn15GZZSY0AAIddGfZXsp+/H16khTkV3L3Jc/J9SECbT3T2ZrxeXenE8w43w1t1wsAIyjUJw5WrjXn4nfVdXct65J+nij0sWemTqeWW+O1e2wAHdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb2W75I57M2iv+vxPyjzK2vWkbtOkxWZ6dA6LdkbZqU3yrgo+r5s5LLrLX782zJfzaR8eXauC09pazMor6z4n5R5nJZqU3yrgo+r5nCDHfzMluuHauGsNll1tvw5t+hrAMszMzuXaIiOgAEAA2l1Zg7F4cxtMRMsw2l1NTnJ+hiR7LRVsdiXTmYubfoYgruVorAACEgB14un237Sl7kPN9WXpjtedVjaLWisblywhKclGEXKT8ESeLpaW0sh7v8AUXT5Tuox6seO1cdvN+LNp6uDwq15vzLDk8mbcV4eRioxSikkuiR6AegygAA8aUls0mn4M4MnS657ypfBLy8CQBzyYqZI1aF63tSd1lXLaLceW1kXHyfgzyV1kocEpylHyb3LHKMZxcZJST8GR2TpUZbyofC/1X0PMy+FenOOdw108itvmigZ21WUy4bIuL9fEwPPmJidS1xO+YD1Sa6HgA2qafXkZGg9UmiYlWa/s3AxjNP0ZkWU1oPYycXvFtNeKPAEO6jUZR2Vy4l+sup312wtjxQkpIgj2E5QlxQk4vzRtxeZenFuYcL4InrhPgj6NR8Ll/zI7oTjZHihJSXoeljzUyR+WWa1LV7ZAA6qAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANpLdtJepzWZ1Ff8AW4n5RKWvWnNp0mKzPTpDaS3b2RGWalZLlXFRXm+bOWy2yx7zm5fGzJfzaR8Y27VwWntK2ZtFf9biflE5LNSm+VcVFeb5s4gZL+Xkt1w71w1hnZbZa/fm5fGzAAyzMzO5dYjQACAB42l1Zi7F4cxtMRMszxtLqzW5yfoYkey0VbHYvDmYucn6GIK7laKwAAhIAAAOirByLelbivOXI7atJiudtjfpHkaMfjZb9Q52zUr3KKOirCyLfg1tLzlyJqrGpp/4dcU/PxNptp+H/wB8/wCma3lf2w4MTTVTNTtkpteG3JHeAb8eKuONVhlve153IADoqHjls0vF+Bhdaqo7vm3yjFeLPaoOK4pvecuv4FfbnUJ1xtmACyAHklvFr0PK5ccIy80RvnQyABIxsrhZHhnFST8GRuRpXWWPL/ll+JKA5ZcNMsfmhemS1OpVqyudUuGyLi/JmJZLaq7o8NkVJepG5GlSjvKiXEv1X1PLzeFenNOYbcfk1txbhGg9nGUJOM4uMl4M8MPTSGUZtepiAabVJMyNBlGbXqiYlSa/s2g8Uk+h6WVDKuydUuKEnF+hiCYmYncI7SNGop7K5bP9ZHdGUZx4otNPxRAGdV1lMt65NG3F5tq8X5cL4In4p0HFRqMJcrVwvzXQ7E1Jbppp+KPSx5aZI3WWW1Jr29AB0VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHjait5NJebOezOohyTc3/dKXyVp8p0mKzbp0njait20l5sjLNRtlyrSgvnZyzsnY95ycvjZkv51I+Mbd64LT2lbM6ivkpOb8onLZqNkuVcVBefVnEDHfy8tvvTtXDWGU7J2Pec3L42YgGaZmeZddaAAQAPG0urMXYvBDaYiZZnjaXVmtzb8TEr7LRVsdi8FuYubfjsYgja0VgABCQALm9lzfkSAOmrAyLeahwrzlyO2rSYLnbNyfkuSO+Pxst+ocrZqV7lE+Oy6nRVg5FvSvhXnLkTdWPVSv5OuMfXbmbDbj/D4/XP8Apnt5U/phG1aTBc7bHL0jyR21Y9NK/k64r125m0G2mDHj+MM9sl7dyAA7OYAAAAAGF1saa3Ob5fae22Rqg5zeyRw0xlm397Ytq4v3YnHJk1MUr3K9a75npvxoSsl7RcvefwY/qo6QC9K+saVtO5AAXQGjHe0ra/1ZcviZvOWT7vUY+VkdvlOWSfWYn+f/AFasb3DqAPJSUIuUnsl4nVV6AuaAAAAa7qKr48NkFL7URmTpc4bypfHH9V9SXBwy+Pjy/KOXSmW1OlZacW1JNNeDPCxX41WQtrIpvwfiiLyNMtq3lV/KR8vE8vN4eTHzHMNuPyK24nhwgPk9nya8AY2gMlNrrzMQCY23KSfQ9NBnGxrrzLRKk1/ZsB4mn0PSVA2U32UveEtvTwNYJi01ncExE8SlKNQrs5We5L6jsT3W65or5tpybaH7kuX6r6G/F5sxxdnvgjuqbBy0Z1VvKXuS9eh1Ho0yVvG6yzWrNZ1IAC6oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyUoxW8mkvVnNZn0w5Rbm/QpfJSnynS0Vm3UOo8lJRW8mkvNkZZqNsuUEoL52cs5zm95ycn6syX86kfGNu1cEz2lLM+mHJNzfoctmo2y5QSgvnZxgx38vLb707Vw1hlOydj3nJyfqzEAzTMz26gAIAHjkl1Zi7PJDaYiZZnjaXVmtzb8TEr7LRVsdi8EYubfiYgja0REAAISABJt7JNvyRIA6qtPyLf6nAvOR21aTXHnbNzfkuSNGPxct+ocrZqV+0Qk29kt35I6asDIt58HAvOXImqqKqltXCMfiRsNuP8AD4j5yz28qf0wjqtJrjztm5vyXJHbVRVStq64x+Q2A20wY8fxhmtktbuQAHVQAAAAAAAAAAAA12310reckn5eJE2isblMRM9OHKqysie7r2iui3R4rMvFglLhUV0T2M5Zl174catpeYhp85vivs5+S5/WeZNfa02xbmf36hp3qNX0V6nvsp1/RZ3VzVkeJRkv3lsYVY9VPwIJPz8TabsVckR+eduF5rPxgAB2UDj1JOMa7V1hI7DRnR48Wa8uZxz13jlfHOrQznfCFSsk9otb/GRzunmZUIvlDflExxq55M4qbbrrXP8AA26fHjyrJ7co77GKct801jqJ/wC/3d4pWkTP2kgAemygAAAAAAANGRiU5C9+PvfrLqReTp11O7h/KQ9Oq+QmwZsvjY8vM8S6481qdKwCeyMKnI5yjwz/AFo9SLyMC6jdpccPOP4Hl5vEyY+e4bseet+OpcoAMjsdDNWeZgCdkxtuTT6HpoT26GyNnmWiVJqzATT6AlQN9GVbRyi94/qs0AtW1qzusomIniUvRm1Xcm+CXkzpK+dFGZbTy34o+TPQxeb9ZGe+D7qmAaKMuq7knwy/VZvPQret43WWaYmJ1IACyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeSnGC3lJRXqzls1CmHKO836dCl8lKfKVorNuodZ5KUYLeUlFerIuzULp8o7QXp1OWU5Te8pOT9WY7+dWPjG3avjzPaVs1CmHKO836HJZqF0/gbQXp1OQGO/lZb/AHp2rhpDKU5Te85OT9WYgGeZ326gAIAHjkl1Zi7PJDaYiZZnjkl1Zqcm/E8K+y0VbHZ5IwcpPxPARtaIiAAEJAD2KcntFNvySJHgOurTsizm4qC85HbVpVUedknN+XRGjH4uW/Ua/wAuVs9K/aIScntFNvyR01adkW83HgXnImq6q6ltXCMV6IzNuP8AD6x85ZreVP6YR9WlVR52ylN+S5I7a6a6ltXCMfiRmDbTDjx/GGe2S1u5AAdVAAAAAAAAAAAAAAAAAAADgyNP4m51S5+TO88lJRW8mkvVnPJjpkjVlq2ms8OCnMlS+7yIcO3ikd0JxsjxQkpLzRz5GRiyjw2NT9Et2cldVyt4sWM4x/v8jLGW2OfWJ9o/7dZpFo30lQYV95wLveHi/u9DM2xO424AAJA8lHig4+a2PQOxz93HFw5KPhHm/NmvTIcOO5eMmZajLhxGv1mkctVeVfXGC9ytfJuYb2imWIrG9Q71j2pMzPcuy7Mpp5b8UvKJrxMizJtk3tGEV0XmFi04tUrJ++4rfdmzBg446lL4U3xMvE5bZIi06+9QifSKzp0AA1uIAAAAAAAAAAOXJwKb93twT84kVkYV2PzlHij+tEnwZc3iY8nPUu+PPanHcKwCbydOqu3lD+Tn5ro/kIvIxLsd+/HeP6y6HlZfGyYuZjhtx5q367aAAZnUTa6GyNnmawTtExEt/UGlNroZxsT68i0SpNZZgAlUOqjOtq2Uvfj5PqcoL0vak7rKLVi0alNU5NV/wZbS/VfU3Ff6PdHXRn2V7Kz34/Weji82J4yM18E91SoNdN9dy9yXPyfU2G+totG4Z5iY4kABKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhbdVRHitsjBf3nsRmR2gxa91TGVz9OSIm0R2vTHe/wAYSxjOcYLeclFerKRndqNReS4xcKa4yXuwXNr42TKs76MbOJyUlumzP5GecMRMRva1MXtMxP0lbNQphyhvN+nJHJZqF0+UdoL0OUHm38rLf701VxUh7KUpveUm36ngBndAAEADxyS8TB2eSG0xEy2Hjkl1Zqcm+rPCvstFWx2eSMHJvqzwEbWiIgABCQA9jGU3tGLk/JLckeA7KtNyLOckq1/e6nZVpVMOdjdj+ZGnH4mW/wBa/wAuNs9K/aIjFye0U5PyS3OqrTcizm0oL+8TVdcK1tCEYr0Rkbcf4fWPnO2e3lTPxhwVaVTHnZJzfl0R2V1V1LauEYr0RmDbTDTH8YZ7ZLW7kAB0UAAAAAAAAAAAAAAAAAAAAAAAADRlW20w4q4KS8X5G8FbxNo1E6TE6lHVSy8tbxtjCPobY6fDfe2crH8Z7Zjyps77G6/1oeDOim2N0OKPyp9UzLjxVmdZOZ/l1tedbr08rpqr+BCK+Q2AGuIiOIcpnfYACUAAAAADyUYy24knt03PQOnNgcec+8nVjx/rPd/EdiSSSXRHDify+Xbe+i5RO44Yfzbyfv8A+Q6X41UBi7IR6zin8Z7GSl03+Y7bjpTT0AEoAAAAAAAAAAADSa2fNAAcOTplVu8qv5OX1EXfjW472sjsvNdCxHjSkmpJNPwZjzeHTJzXiWjH5Fq8TzCsgl8jS4T3lQ+CXl4EZdRZRLa2Dj6+DPKy+PkxfKOG2mWt+msAHB0eqTXQzU0+vI1gmJRMRLeDSpNdDZGafXkWiVJrMMgASq9Tae6ez80dlGoThsrVxrz8TiB0x5LY53WVbVi3adqurujvXJP08TMgIylGW8W014o7aNRkuVy4l+sup6OLza24vwzXwTHxSQMK7IWx4oSUkZm6JiY3DP0AAkAAAAAAAAAAAAAAAAAAAAAHDqWqV6eopxc7JLdRT25ebILI1zMu3UJKqPlBc/nOjtNS1fTf4Sjwv41/7kIcL2nenqePhxzSLa3LKc5WS4pycn5t7mIBya3DqMNpxsXitmTehX99p8YN+9U+H5PAjMuHeY8l4rmh2fv7vNlU3ytjy+Nf7Yz1/qYJ/h52WPTPv91kB45JeJg7PJHj7doiZbDxyS8TU5N9WeFfZaKM3Z5Ixcm+rPARtaIiAAEJAD2EJTe0IuT9ET2PAdtWmX2c57Vr16nbVpdEOc97H69DTj8TLf61/lxtnpX7Q0Yym9oRcn5JbnXVpmRZzklWvXqTMIQrW0IqK9EZG2n4fWPnO2e3lWn4w4atLphzm3Y/XkjshXCtbQgor0RkDbTFTH8Y0z2va3cgAOigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqnU1PvKuU/FeEjaCtqxbtMTpjCXEt+j8U/AyG3PfxBMfygABIAAAAABpy3PuHGuLcpcuRuBW1faJhMTqdo+jFyow4e8VcfJc2b44cetlk7H6s6Qcq+PSsa7/yvOS0sIVV1r3IRXyGYB2iIjpz3sABIAAAAAAAAAAAAAAAAHk4RnFxnFST8GegdiNydKi95Y74X+q+hG21WUy4bIuL9SyGNlcLY8M4qS8mYc3hUvzTiWnH5Nq8W5VoEnkaV1ljy/5ZfiR0651y4bIuL8meXlw3xT+aG2mSt+mIAOK7KMmviM4zT9DUCYlE1iW8GqM2vVGakmWiVJrMMgASqyhOVcuKEnF+h3Uaj0jcv+ZEeDrjzXxz+WVbUrbtPQnGyPFCSkvNGRA12TqlxQk4v0O+jUU9lctn+suh6WLzKW4txLLfBMdcu8HkZRkt4tNPxR6be3AAAAAAAAAAAAAAAAAAAHBreP7Rptmy3lX76+Tr9W5UC+tJpprdPkyl5OL7PlWVP+pJpfF4HHLH29Hwrbiauc9UW/A2JJdEenF6GmCrXjzIdt4mZuutc918RNkZqte1kLF/WWz+M6Yp51P2x+ZTdItH0sUZKcVKPNNbo9OHRru9wYxb96t8L+47jw8lPS81/ZalvasSAGUITse0IuT9EUiN8QsxB3VaXfPnNqtevNnZVplFfOSdj/vdDVj8TLf61/lxtnpX72h4QlY9oRcn6I66tLvnzntWvXmyZjCMFtCKivRHptx+BSPnO2a3lWn4w4qtMohznvY/XodcIRgtoRUV6IyBspipT4xpnte1u5AAdFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwtprujw2RUl6mYImImNSROukTkaVKO8qHxL9V9SPlGUJOM04teDLMa7qKr47WQT9fFGDN4Nbc04asfkzHFuVcB35Ol2Q3lS+OPk+pwtOLakmmvBnmZMV8c6tDbS9bxusvAAclmUZteqNkZKRpBaJRNYlvBqjNrrzNikn0JiXOYmHoS3eyBux4by4n0RelfadKzOo26saToSS5rxR3xkpxTi90RxnVa65cua8Ueviv6cfTHeu+XeDyElOKlF7o9NbiAAAAAAAAAAAAAAAAFf7Q0cGTXclymtn8aLAcOs0d/p89lvKHvr5Ov1FLxurv49/TJEqsAZ1U23vaquU36IyvamddsDnzq+8xZ+cfeROY+hZFnO6Ual5dWSVGi4lXw4u1/wB/p8x1rS29subyMXrNd7U7s73k8mddcJzjOO+6XJNepaatLunzsarXzsl6666oKFUIwivCK2MiMni48l/ezzqZrUr6w46tMx6+ck7H/eOuMYwW0YqK9Eeg7Ux0p8Y052va3cgALqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAab8arIW1kd34NdUbgRasWjUwmJmJ3CFydNtq3lX/ACkfrOJ8ns+TLOaMjEpyF78dpfrLqedm8CJ5x/6a8flTHF1fB15GnXU7uP8AKQ811OQ8y+O1J1aNNlbRaNwAAolnGb32fM76uHgSi+hxUx3fE/kNy5dDd49dR7Sy5ZiZ1DqBpjc18Ln6m1SUlunuanFsqsdct108UdsJKceKL5EeZ1WOuW66eKOuPJ68T0pau3eDGE1OPFF8jI19uIAAAAAAAAAAAAAA8a3XJ7GDrl+sBo/JmF3nH3EN/q+Y6YqEFtFRivJGvupeaHdS9CIiIWm1rdy28S80OJeaNXdy8jzu5eRKrduvNDdeaNXdy8h3UvQDcDT3UvNGSra/rAbAFyXXcAAAAAAAAAAAAAAAAAACs5fam3Hy7qFiwkq7JQ343z2ewFmBU/zvt/ZIfTY/O+39kh9NgWwFT/O+39kh9Nj877f2SH02BbAVP877f2SH02Pzvt/ZIfTYFsBwaRqD1HB9pnBV+81snuuR0+1437RV9NAbgafa8b9oq+mh7XjftFX00A9rx/2ir6aNsZRnFShJSi+jT3R8xs/4kvjZedAyKIaLjRndXGST3Tkk+rAlgafa8b9oq+mh7XjftFX00BuBjCcLI8UJRlHzi90V7tlJxxsbZte++nxAWMFK7JzlLWNnJtd3Lq/iLnZZCqDnZOMIrrKT2SAyBz+34f7XR/iIp3aW9WavOVNqlDhjzhLddALyCs9k8qmrDvV98IN2cuOaXh6k97fh/tdH+IgOgA132xox7LpfBri5P5EBsB80jlZEJudd1kJN77xk0fQtNhbXp9Eb5ynbwJycnu93zA6QCi6/nzu1iyVNkoqr+Ti4vbp1+vcC9AhOy1uXkYNl2VdOyLlww4ub5dXv/voTYAGvJm68a2cXtKMG18exSfzl1T+3j/hx/AC9Aov5y6p/bx/w4/gPzl1T+3j/AIcfwAvQKL+cuqf28f8ADj+A/OXVP7eP+HH8AL0Ci/nLqn9vH/Dj+A/OXVP7eP8Ahx/AC9AFe7YZLqxaKYSalOblyfPZL/UCwgrHZG3JvtvlbfZOqEVFRlJtbt/6fWdXaPWVh1SxceSeRNbSa/qL8QJnv6v7WH0kbE00mnun4nzCDipxc48UU+a323LFDtbZCChHCrUYrZJTfJfMBbQVP877f2SH02WXByHl4VOQ4qLsipbLwA3gFP7ZfpGj+F97AuAK72N/mWR/E+4sTaSbb2S8QMZWQg0pzjFvpu9tzIoOv6j+Uc9yg/5Gv3a/XzfynV2d1DEwHZZlXWcb92EEm0l5gXQEP+c2mf2s/oMzp7Q6dfdCquybnZJRj7j6t7ASoAAAADGVkIPaU4xfq9hGyE3tGcZP0e5VO2cf+140vODX1mvsa/8A4lcvOlv60BcQU3X9S1KvUe7lJ0RrlxVqD5S8nv4k/omrQ1PG57Rvgvfj969AJMAAAAAObIwacjm1wy/WidIK3pW8atG01tNZ3CCyMC6jd7ccPOJypbtJFnOezCosnx8PDLzjyPOyeBG90lrp5U6/NCKiuFJI9O6WnfqWfOjVLBuj04ZfEzp/StH05+8T9uYJtPdPYzlTbD4Vcl8hr6dSsxMLN0bvCXzmxNNbp7nKeptPdPYbQ7arHXLddPFHbCanHiiyKjd+t857kahVp2NPKumo1QXP19F6nbHkmJ0pau0sCP0jWcPWKO8xbPeXw65cpR+NEga3EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArOX2WtyMu69ZUIqyyU9uB8t3uWYAVP8ANC39rh9Bj80Lf2yH0H+JbCD7T6osTFeLVL+XtXPb+rH/AFApt0I13ThCfHGLaUktt/Uk9I0O3VKZ2xtVUIy4U2t934/cRSW7S6H0LRY48NMphiTVlcVs5pbbvx+sCB/NC39rh9Bj80Lf2uH0GWxPdboAReFp8tO0a7Gc1ZLab3S26opPseV+zXfQZ9KObMz8bBUHlWqtT34d03v8wHz72PK/ZrvoMex5X7Nd9Bl4/L+l/tcfoy/Afl/S/wBrj9GX4AUE2wxr5xUoUWSi+jUG0zXNpzk10bZb9F1jAxtJopuyVCyKe8eF8ub9AKr7Hlfs130GPY8r9mu+gy8fl/S/2uP0ZfgdWJm4+bCU8a1WRi9m0mtn8oELgZF+mdlJXqtK2uXKNkX4yS6fKQOp6zkapCuF8KoqDbXAmvtbLzm4ledizx7nJQntvwvZ8nv9xU+0Oj42mU0zx3Y3OTT43v8AcBF6dn26dk9/TGEpcLjtNNr6ixvLyta7M5cnVF294oRjVF80nF+vmyE0LBq1DUO4vclDgcvdezJq3UaezVssGjGnbGX8o5St2e75eXoBAfknUP2K/wCgzmuotx7O7urlXNc+GS2ZZfzx/wDoP+t/+pB6rn/lLNlkd33e6S4eLfp6gasfCycmLlj0WWxT2bjHfY2/knUP2K/6DOvRtc/JVFlfs/e8cuLfj4duXxMkfzx/+g/63/6gWTJlKGNbOL2lGDafrsUPI1zUcmidN2TxVzW0lwRW/wAyLNgax+VsPN/kO67qv9fi33T9F5FIA9jJxkpLqnuiU/OLVf2r/pw/AstXZ7S5Uwk8XduKb/lJfiU/UqoUajkVVR4YQscYrffZbgWynVbK+zCzr58V8lJJ7Jby4mlyX++RSm23u3u2dmTmTs07ExNmq6lKX7zcnz/36nb2d0iGpWWzyOLuYLb3XtvIDnxtdz8WiFFNsY1wWyXAjb+cuqf28f8ADj+BYPzX03yt+mUu6KhdOK6Rk0gL9RdPI0FXWvec6G5PbbnsfPi/4keDs5Ut/wD5bf547lAAvtmiaRVXKyzGhGEVu25vZfWU3U7cW3Ll7FSqqI8o83vL15nbrmo5ublyxba5VRjLZUrm2/DfzI2MI0ZPBl1T2i9pwT4ZIDv0q3SKaZPUKrbrZPkkuUV86O72zs3+xW/M/wD/AEFhdnXi+0e12pfqca49/LbYgr3VO9+zQnGvfaKk95MCx1V6JnY2V7JiSjZVVKe8t1ty+MqxbNJ0mzB0nMvyN4220yXB+qtn19SpgfUSj9qcr2jV5QT3jTFQXx9X9v1FxzcmOHh25E+lcd9vN+CPm9k5W2Ssm95Sbk35tgTmNqFmk6HX7PW+9ypSl3rXKOz22Xm+X1kJxd7dxXTl7z3lLq/jLVj1ws7E+/FS4YTkt/BqT5ld0zGpy82FORb3Vck957pbcvUCXpzOztdUYPEtm0tnKUeb+s05+do7xpRwsHa6XJSmtlH16nVPQdJhCUnqe6it+U4tlfxqo35VVUpKEZzScm9tl5gY0Kp3QV8pRq395xW729C3Y/aTTKaq6Kq71CKUYrhX4nJ+b+lf+KL/ABIFelCNeW4QfFGNmyfmtwLl2h1bI0v2fuIVy73i3403028mvMqmp6ldqd0bb41xlGPCuBNLbf1ZddU0nH1Tuu/nZHut9uBpddvNPyKVq+NRh6hZj40pyhXsm5tN7+PRAbdM1rJ0yqddEKpKcuJ8ab+xo79V7QzydOror4VbbHe5x6L+6jDs/ouNqePbZfO2LhPhXA0vD1TNV3Z3Ljqnsla4q5e8rWuSj6+oEbh4zy8mFEbIVym9k5tpb+RMfmln/wBtjfSl+BHappt2mZLrnu4PnCzblJfiSeL2qvpwXVbWrb4raE2+XygRmp6Xbpk4QutpnOS34a220vXdDRaZ3aviquO7jZGb9EnuzRKWRn5e74rb7X8rZddC0iOmUOU9pZFi99rwXkgOXtFrGVpuRTDH4Npw3fFHfxIj86dR/wDJ+h/qWXU9FxtTthZfO2LgtlwNL7Uzi/NLA/tsn6UfwAh/zp1H/wAn6H+o/OnUf/J+h/qTH5pYH9tk/Sj+A/NLA/tsn6UfwArOo6pkak63kcG9e+3DHbr/AOxhp+ffp17ux+HiceF8S35bp/cSmv6Jj6ZjVW0TtlxT4XxtNdPRIj9HxKs7Uqsa6U4wnvzg1vyTf3AZahq+RqUIxyI1Phe8ZRjs0eafqt+nKXs8KlKXWco7t+hZPzSwP7bJ+lH8B+aWB/bZP0o/gBOVSc6oSfVxTZkeQioQjFdIrY9AAAAAAAAAAAAYyhCXwop/GjIAaJYdEv6m3xM0y06P9Wxr4ztBScdZ+lotMI2WBavguMvqKj23pzUsetUWvHinOUordcXRb7f75n0APmtnzXkRXFWs7hM3mY0+KYuVdiXxvxbZV2xfKUWfQOz3bKjO4cbUeGjJfJT6Qn+DJTUezOk6jvK3FjXY/wDvKvdZVtR7A5Ne8tPyY3R/Us92XznRR9AB8+0vXdV7OTji6xjXSxFyUpLdw+J+K9C84WbjahjRyMS2NtcvGL6ej8gOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh9Y16nT06qWrcnpw+Efj/ADo1fVatMx+KW0rpL3Iefq/QoeRfZk3zuuk5WTe7Yyci3KvldfNzsl1bJrs9oby5xysqO2PF7xi/67/ACBJZapkY2h1YtMJVxsct7fPn0RH5vLNv/AIkvtLXoWHTndnYU5EOKDnL409+qAitC1+eC44+S3PG8H1cP9C5VzhbXGdclKElumujR8/1bS7tMyOCfvVy+BZtykvxOjRNbs02xV2bzxpPnHxj6oC9EF2n0/Kz4Y6xau8cHLi95LbfbzZM0X15NMbqZqcJLdNGwD51maXmYMFLKrjWn0Tsi2/kT3NtGh6jkUwupx1Oua3jJWR5/WdnafTrsfMllcUrKbX1b34X5fF5GvQdalp1ndXbyxpvmvGD80Br/ADd1X9l/6kPxPH2e1SKbljJJc23ZDl9Ze67IW1xsrmpQkt1JPk0VbtJritUsLElvDpZYvH0XoBWnyZcOx0JR0+6bW0ZWe6/PkVrTMCzUcyNFfJdZy/VXmfQcemvGohTUuGEFskAyMirGqdt9ka4LrJlV7UaliZtVEMa5WShJuWyfInO0UHPQ8mMU2/d5L95FHuxMiiuM7qLK4y+C5xa3A36RqH5NzPaO77z3XHh4tupYFpce0NNWo22umU4uPBFbpbSaK7peBLUsv2eE1B8Llu1udmuY9mlyxsWGROSjW3uvd6yb6bgSv5oU/tdn0UPzQp/a7Pooq/tF39tZ9Jj2i7+2s+kwJTVdMw9LvhVZdfNyjxbxivP4zPSdHxNV73urr4d1tvxRXPff8CFnOc3vOUpP1e57Cyde/BOUd+uz2Au2Ho8NKw83gtlZ3tfPdbbbJ/iUYtfZuc56NnOcpSfPq9/6pVALbX2sxoVxj7Pc+FJdUVrOvWTm33xTUbJuST6rclYdlM6cIyVuNtJb/Cl+BD5NEsbJsom05VycW103QFoxLcGnsrjyz61ZB8ajHbdt8T6PwOLRddhi5Kx5QVWHJ7JdXFvxb8SW0bEqzey9OPct4zUufinxPmio5uJZhZdmPaveg+vmvBgfSU91uj5le+K+x+cm/rLb2V1OWRS8O7dzqW8JecfL5CoWf8SXxsC/439Hqv8A0i/yHz4+h1/oKH/pl/lPngFpzO0lNeXKUdO/7RXvDjtaTj6cvxIPUtSt1O5WXV1RkuS4I7f+5ccrQcHLzJZN0ZuUtt4qWyZVcjT9Rxcyy3GxciqKk3B1pvZb8uaA5Hp+YqO+9lt7v9bgZ7gZs8DIV1ddc5rp3kd9jqjrWrYz2lkWL0sin9qPLNYeQ28vCxbm+suBxl86YEku012XRbjvDUpWVyW8J7bcnu9titF3ho+Lg4OTkVVyhbPHkmnLdR5c9ikAXDtjbZHCorj/AMOc3xfJ0X+/Ip5fO0mHPM01QqjxTVkWl8b2+8qmuYsMLOjjw6Qrit/N7c384Fj0uieT2RjRXtx2QnFb9PhMgMnQcrEhx5F2NWv71nX4ltzN1tudjaBg24+RZCmXHGShy2fFLx6/+xy42k6jny7zu5qL5u217L4931Aj2tm0mn6o79P0jJ1KuU8eVT4Hs1KWzRnl4+n4lMqYXSysuWy4q+UIc/rNGm51umZ0bop8nwzh03XigO99l9QSbbpSXVuf+hzYWk3ZWVKqi6icqmm9p9V6cuZ7qet5eotxlLu6fCuPT5fM7Oz+j5lttWbG3uK094y6uXpt5AWvOyoYeHbkT6Qjvt5vwR84tsldbOyb3nNuTfm2WjtndbGGNUuVU95P1a2/ErFlM6665yWysTlH4t9vuYHZpWr5Gl2Pu9p1Se8q34/L4Mksjtbkz3WPRXUvOT4n9xx6XostUw52VWKFkLFFqXRrkbNY03F0i+pNWXxsTezlw7bbegEfl6hl50l7RfOznyj4b/EjdXomo2UO6OLPhXg+TfxLqdeLr1OH/N9Mog/1uJt/O+Z1fnfb+yQ+mwICu3Iw7+KuVlNseT23TJSjtPqNWynKu5f34/hsbcntJDLjw5Gm0WL+8+a+XY5sDGxNWz1RCmWNxJveM+JLb0a+8CzZuZkLs5LLX8ldKuM1w+G7X3FU/Lup/tc/mX4F6uxab8Z41sOKppJx3a5I4fzd0r9l/wCpP8QKn+XdT/a5/MvwH5d1P9rn8y/A4JpKckuibLjpehabkabj3W43FOcE5Pjkt384Ebl33ZvZSN2RN2TjkfCfxNfeRuhz4NZxH/5iXz8i06vgUY3Z7Joxq+CEdppbt89031KbiWdzl0277cFkZfMwPpYATT6MAAAAAAAAAAAAAAAAAAAABjKaj4MDIGvvvQ871+SAznCFkXGyMZxfVSW6I6vQ8TGyXkYHFh2v4SrfuT+OPQ7u9fkh3svJAbV059Qae9l5I971+SA2g1d6/JDvvQDaDBWJ+DMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANd9ffUTr45Q4otcUXs16o+d6hh3YOXOi7nJPdS/WXmfSDTbi0XXV3W1RnZX8CTXQCsaH2clc45OdFxr6xqfWXx+SLZFKMVGKSSWyS8D0AfNc3+e5H8SX2ly7K/oSv96X2lNzf57kfxJfaXLsr+hK/wB6X2gSWXiU5uPKi+HFCXzp+a9Sg6npl2nZfczXEpfAkl8JfifRDCdVdkoSnCMnB7xbW+z80BEdmtMvwMaU8iclK3n3XhH1fqTRqyr1jY1l8oTmoLdxgt3sVy7tettqMR7+c5/cgLJfTXkUzpuipQmtmmUTWtKemZKjGyM65848/eXo0bMrtHqORulaqYvwqW319SL3nbPnxTnJ/G2BuqzcmnHnRXfONU/hRT5MxxceWVkQphKEXJ7bzlskSNPZzUbsZ3d0oPwrm9pS+Tw+UjLqbcex13VyrmuqktgPoOl6bTpmMqqucnznN9ZM7D51i6nm4eyoyZxiv6re6+ZknT2szYLa2qmz12aYFyK32z/m2N++/sJDG1edmkT1C7FcIx5qMZbuS8X0RXNe1qrVK6YVVThwNtuTQHvZL9Mf/bl9xcMyN88S2ONNQucfck1vsyodkk3rD2XSqW/1F1A+cQycvC1B2uU45EJPi4urfimXvS9Qq1LEjdXyl0nH9VnFrOiY+ZcsucpQ4It2qC5zSXh6mjE7QaRiURqorsrgvDg+3mBH9sv0jR/C+9nR2K/+d/5P/wDoiNd1KOp5ytri41wjwx36v1+smuxdbVOVbs+GUoxT+Lf8QJ/M/md/8OX2HzQ+l5n8zv8A4cvsPmgH0qi6pUV72w+Cv6y8ig6u09Wy2nunbLmvjObu5/qS+Yxa2ez6gXzsz+gcb/m/zMy1bRqdUnVOc3CUHs3Fc3HyMezP6Bxv+b/MyLze02Xh5l2PLHqbrm0nzW68ALDi4mPg0d3RCNcFzb8/Vs+ak7ldqcu+idUKq6uJbOS3b29CEhCVk4wit5SeyXmwPoUVw6Il5Y23/wCJ87PpN8O702yv9Wlr5kfNgLV2rrzL8ilUUXTrri25Qi2t38XxIgY5uo4vJZGTX6OTS+YlfzuzP2ej5n+J4+1mXJbSx8dp+DT/ABA44dodSUeGd0bY+VkE/uMvy1VY08jTMSbXjCPA38p7brcbv+JpuE/Xgafz7nDdkUW/Bw66v3JS+9sC40al+VNGy7lS6lGE485b7vh/1KKSuLrl2Lp0sKumrgkpJye+73+UigPqJR+1X6an+5H7C8FH7Vfpqf7kfsA76dQv07sxhW00wsTlNOU+fC+J7cvnIqWRqmt290pWW7/1I8or4/D5yVx87Bx+zWLRnVztVnFJQiuu034+BG5WuXTr7jCrjh0fq19X8bA6OHE0FbtwytR8F1hU/wASFvds7HbdvxW7z3a+Fu+p2aZXhe1cWp2yhCD5w4W2367dEZ6/nU52ep4y2qrrVceW2+276fKB7dgVvQKM6pPjVko28/Xl/v1JTslqSi5YFstt3xVb/Wvv+c7NAw439m+5uXuXOXyc9t/qKlfTdg5kqpbwtqlya+poC59odOnqNWNCv4St2b8otPd/UQfayqFGXi1VraEKFFL03ZaNLsybsCqeZBQta5peK8G/Jla7ZfpGj+F97A7uxv8AMsj+J9xy9tP5xi/uy+1HV2N/mWR/E+45e2n84xf3ZfagI/QtKhqtl0Z2yr7tJ8lvvuTH5oU/tdn0UV3B1HJ0+U5Y01BzWz3in9p2fnLqn9vH/Dj+AG3W9Cr0vDhfC+VjlYobNbeDf3GHZX9NQ/cl9hyZ2r5mfSqsmxSgpcSSilz+T4zr7K/pqH7kvsAvBhO2uv8A4k4w/eexWu2LtrsxZQslGMlJNJtdNvxKu229292B7Zzsl8bLbgdoMDE0zHqnOcrIQSlGMHyfylShCc3tCMpPyS3OurSdQtW8MO7bzcWvtAtFOt0avOzBppsXe1yXFPZeHkUtpptPk0Wjs9o2bhagr8mpQioNfDTe/wAhE9oMN4eq2rbaFj7yHxP/AF3AuelZKy9Nx7k924JS+Ncn9ZTI6zl4uoX3Y9vu2WSk4PnF7vyGm61fp2LdRCKnGxPh3e3A/Mj6q5XWwrgt5TkoperA+j4N88nCpvsioSsgpNLw3N5hVWqqoVx6Qior5DMAAAAAAAAAAAAAAAAAAAPNl5IcMfJHoAx4I+SHBHyMgBjwR8hwR8kZADzgj5IbLyR6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKXk9m9RsybbIwhwym2vfXRssehYl2DpkKL0lNSbez36skQAAABrdbMqOX2WyZ59nszrjjt7xcpdPTYtwArWL2Rqjs8rJlP+7WtvrZN4em4eCv8As9EYP9brL52dQAGrJxaMqvgyKoWR8pLobQBAZXZPEtbePbZS34fCX4/WR77JZStj/L1Sr4lxNbppfEW8AaLsWE8CeLBKMHW60vJbbFVj2Szf61+Ovicn9xcQBF6JosNLjOTn3l0+TltskvJEoAAaTTTW6fgUqXZbUOOXCqlHd7bz8C6gCn0dksuUl399MI+PDvJ/YWnCw6sHFhj0JqEfF9W/Nm8Aa74O2iytNJyi4rf1RU/zRzP2ij53+BcABjXFwqhF9YpIrmb2Xtysy69ZUIqybls4vluWUAcml4bwNPqxpTU3Df3ktt92395Eaz2ev1DUJZFNtUIySTUt990tvIsQAqK7IZG/PKqS9IsldK7O4+n2q6c3fbH4La2UfXbzJkAa8iDsxrYR+FKDS+Ypf5san/Z1/TReABA/mlgf22T9KP4D80sD+2yfpR/AngBA/mlgf22T9KP4D80sD+2yfpR/AngBXreyWGqp91bkOzhfDxSjtv4b8iK/NbUf/J+n/oXYACua1oGVqGoSyKbKYwcUtpyafL5CxgCv29n7btFxcOVlavonJ8a3a2bbfh8XzHXpugYmA1Nrvrl/XmunxLwJUAVTVezmXk6ldfj933dj4lxS2e+3P6zXi9k8mVi9ptrrr358D3ky3gDCmqFFMKq48MIJRS9DnyNNxcnLqyra07auj8/Lfz2OsACu9o9Iy9RzKrMaMXGNfC95bc92WIAQ/ZzT8jTsa2vJjFSlPdbPflsau0ek5OpW0Sx+DaEWnxS2J0AVjSezPBOz8pVQsi0uDhm+T8emxJ/m7pX7L/1J/iSgAr2q9mqJ40Vp1Ea7uNbuVkvg7Pzb8djVoehZmBqMb7+74FFr3ZbvmWYAc2ZgYucoLKq7xQbcebW3zGNWl4FPwMOlPzcE39Z1gDyMIwjwwioryS2PQABxarplOp4/d2+7OPOE0ucTtAFKt7LahCbUO6sj4NS2+0k9E7OSxMiOTlyjKcecIR5pPzbLEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHNLUcGMnGWZjpp7NO2PL6zpPmub/Pcj+JL7QPo1N9ORBzothbFPZuElJb/IZWWQqg52zjCC6yk9kiD7Hfoq3+O/8sTs7RfoPK+Jf5kB0flPA/bsb/Fj+J0pqUVKLTT5prxPl59Lw/5nR/Dj9gG4A1XZFGOk77q6t+nHJL7QNoNdN9N8XKm2FiXVwkn9hsAA03ZeNQ9rsiqt+U5pfaYwz8OyXDXl0TflGxMDoAAAAAAAABhbbXTHitshXHzlJJGNOVj5Daovqt268E1Lb5gNoAAA13ZFGOk77q6k/wBeSX2im+m+PFTbCyPnCSa+oDYAYznCuLlZOMIrxk9kBkDmWoYUpcMczHb8lbH8TpTTW6e6YAAAAaY5eNK3uo5FTs6cCmt/mNOr5c8HTbsmuMZThtspdObS+8DqnOMFvOSium7exkfPVnZOdqVE8m2U/wCVjsvBc/BH0IAA3st2c0tQwovaWZjp+Ttj+IHSDCu2u6PFVZCa84vczAHjajFyk0kubb8DG26qiPFdbCuPnOSS+s57smjIw7+4vrt2rlvwTT8PQD38p4H7djf4sfxOmMlOKlFqUWt00+TR8vPpOn/o7G/hR+xAdBjOcK4OdkowjFbuUnskZHDrf6Hy/wCGwNn5TwP27G/xY/idMJRnBThJSjJbpp7po+Xn0fS/0Vh/wIf5UB1AGFt1VEeK62FcfOckkBmDTTlY+Q2qL6rWvCE0/sMrr6aIqV1sK0+jnJL7QNgNVORRkJui6u3brwST+w2gAa7cimj/AI11df78kjUtSwW9lm47fpbH8QOkHkZRnFShJSi+jT3R6ABpuy8aiXDdkVVvynNL7TOq2u6HHVZGcfOL3QGYAAA13ZFFH/Gurr3/AF5JfaYV52JbLhryqJvyjYmBvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5rm/z3I/iS+0+lHzjU4d1qeVDnytltv5bgWnsd+irf47/AMsTs7RfoPK+Jf5kR/Y26Dw76N1xxs49t/BpL7jt7TXQq0W6MpJSs2jFeb3TAoZfs/8Ao3Z/6dfYUIv2pQdfZ66EusaNn8wFDqsdVsLI7bwkpLf0O3Lw9SuqeoZNVkoT5ucvL4vBEefQ9ZSjouUktkqmkgKNp2ZZg5ld9cmtn7y814ouXaPNtwdMc6XwzsmoKX6u6b3+ooZ9F1XAjqWFLHk+F78UZeTAo2nYn5RzVTO+Nblu3OfPf8WSOT2Wzq7lGhxvg18PdR2+Rs5cnQNSx298eVi/Wr97f7zkjdl4c9o2XUSXhu4gXXQcbPxMeVOdKMorbu9pbtehU9f/AE3lfvfciwdmtZtzZSxcp8VkY8UZ7bNryZX9f/TeV+99yAsnZD9ES/iy+xFb1/8ATeV+99yLJ2Qf/wAIl6XS+xFa15qWtZTT39/b6gLH2O/RVv8AHf8AliVPN/nuR/El9pbOx36Kt/jv/LEqeb/Pcj+JL7QO7E07UNYoU4OPdUx4Icctly8ER6d2Jk7pyqurlty5NNF37MbfkLH2233lvt+8yp69t+Wsrb9f7gLfi5v5Q0KWRyUnVJTS8JJcygFu7Nb/AJu5e/609vooqIExLS9T1Oieoz2nxc0m/ekvReRH4WZdg5Mb6ZNSi+a8JLyZ9A07b8m4u223cw22+JHzu/b2izbpxPbb4wPoVuoVV6Z7c+dfdqaXnv0RRM7OydSyeO6Tk2/dgukfRIm8ri/MrH6/CW/xcTIbR+H8r4nH072Pz78gN+ToGfi4ftNkIuKW8oxe8or1PdE1i3TsiEJzcsaT2lB+Hqi65u3sORxdO7lvv8R81Auva576RFr+1j9jKdRdZj2qyqTjPZpNeq2+8tXaDf8ANnF4uu9e/wBFld0mtW6riwkt07I7r5QO7TtAzLMyh5NEq6W+KUnt0XPb0NvazHueou9U2OlVxTs4Xwr5S5EX2l/QOT/y/wCZAUOKcpKMU229kl4lq7JYuRj35LvotqTjHZzg47835lbwv57j/wASP2n0e3fuZ8O/FwvbYCla/rFubkzpqm440Hskv6/qzXhdns7NxlfWq4Qkt48ctnL4iKJvHwe0E8euVE8junFOG2QkttuXLiAjYWZWmZj4JSpurez2/wB8y8YWqQyNI9uktuCDc4+TXVf78yq26DrN1jstolZN9ZSti2/l3JLHwsvB7M59WVXwNviiuJPly36fEBXs3MuzsiV18m23yXhFeSO2eiahi4azdlGKXE1GXvRXqRtXD30OL4PEt/iPo+dt7DkcXTupb/MB81PpOn/o7G/hR+xHzY+k6f8Ao/F/hR+xAdBw63+h8v8Ahs7jh1v9D5f8NgfPD6Ppf6Kw/wCBD/Kj5wfR9L/RWH/Ah/lQHzgkJ42pZ9DzJV2WVQWyl4JLyXkR5f8AS0l2fpSX/c/cBRKbrMe6NtUnCcXumjsyKNSz656jdXOdb5ufgl6LyI8+g4yX5u1LZbeyr/IBRMTJtw8mF9MnGcHv8foX7UMuyrSp5GNCU7HBOCUd3z8dvQ+dn0K3Oq07SKsi3dpVxSiusnt0Aos68vJykrI2Tuslt76e7fyndm9n83CxHk2upwj8JRlu19R0W9ptSyLFDGjCtt7RjCPE385pzsLWbMSeTnSn3UOe1k/Xb4IGvQM+zD1GqKm+6tkozj4c+W5a9fz5afpsrK3tbN8EH5N+PzFHwv57j/xI/aWntlFvT6JJclbzfyMCqVV3ZeTGuG9ltktlu+bfxkhmadqGj0vvJR7m9cEuB7r4n6mPZycK9bx3Y0k20m/NppFk7WTjHR3GTXFKcVFeYFT0v9K4f8eH+ZFx7QanLTcNd1t31rcYb+HmynaX+lcP+PD/ADIme2e/teN5cD+0CGx8fK1TM4Ib22y5uUn9bZu1LRcvTa1ZcoSrb24oPdJmvTKc++6cdOlNWKO8uCzge3zo77dK7QXwcLldZB/1Z5Ca/wAwHT2Y1e32iODkTc4TX8m5PnF+XxFsKXp2hanj6hjWzxuGELYuT7yPJb8/HyLoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq/abRrLLXnYsHPdfykEufLxRaAB8xhOyqfFXKUJrxi9mj26+6+XFdbOyXnOTb+s+j24mNc97ceqbfjKCZjDAw65cUMSiL81Wl9wFS7PaNbl5MMi+DjjwfFz/AK78EvQs+t/ofL/hs7gB8uPoet/ofL/hs7gB8uL7r6z1iRs0+yUXBtzjFLeS/wBCUAFBxtcz8fKjbO+y1R5Oucns/kM9Z1yWq1119xGqMHxfC4m38eyLrbh41z3tx6bH5ygmY14OJVLirxaINeMa0gIDsnpttdk826DhFx4a0+Te/icHanDso1Od/C+6u2al4b7bNF2MZwhZBwsjGcX1UlugPneFn5mHxQxLZQ7zk4pJ7/6mvMoux73DITVrSlJN8+fPn6n0OrDxaJcVONTXLzhBJm8CB7Hfoq3+O/8ALEqeb/Pcj+JL7T6UfNc3+e5H8SX2gdeBq+dpdDhUl3Vm8o8cd15br5jjSuzMl7KVt1st+XNtsunZ+mq/s/jRurhZH3uU4pr4TJKnFx8ffuKKqt+vBBR+wDhwsH8n6FOiXOfdylP42ign0vM/md/8OX2HzQCVp1vUMPD9jTUY8PuuUfein5HFh4l2bkRpog5SfV+CXmy+YuNRkadi9/RXbtVDbjgn4LzOmmiqiPDTVCuPlCKS+oDnnp1U9K/J7b7vu1Dfx3Xj8/Moubg5Om5HBdFxae8Zro/VM+jGM4Qsi42QjOL8JLdAUTJ1/PysP2ayUFFraUoraUl6mWiaNbqF8Zzg440XvKTXwvRFyWn4UZcUcPHT81VH8DpSSWyWyQEH2uW2kRS/tY/Yys6H+mcT+Ij6EABxazjzytKyKa1vOUd0vPbnt9R2gD5jCUqrVJcpwe638Gi49ntYyNTuvhkKC4YpxUFt8f3EtbhYl0uK3FpnLzlWmzOnHpo/4NNde/6kUvsApOv6RZg5U7a4N403vGSXwfRmGDr+dg43cVuEoL4PHHdx+IvrSa2a3TOaWnYMnvLDx2/N1R/ACk0ajq2TkcNGTfOyb+DF8vm6JFzxsW16b7PnWu6ycWrJcvHwR01U1UraquFafhGKRmB83z8K7AypUXR2afKXhJeaO6Orann40NOr2nxLg3jH3pL1ZdrqKr48N1ULI+U4pr6zynGox9+4prq368EVH7APmjXDJp9VyPpGn/o7G/hR+xHQABw63+h8v+GzuAHy4+j6X+isP+BD/KjqAHy4+gaZ/R+j+B9xIgD5cfQcb+j1X/pF/kJAAfLi6a5i25XZ6hUxcpVqE3FdWuHb7ydAHzTFybMPJhfS0rIPdbolL87VNdqnWoJU1xc5quLUeS35vnz9C32YOHZPjsxaJy85Vps3QrhXFRrhGEV0UVsgPmuLNV5VM5coxmm/nPoefh16hhTx7HymuUl4PwZ0kbr8cl6ZOWHOyNlclL3G02vECo5OiahjWuHs1liT5Tqi5J/MZZWn6j7FLLzXYoQ2jFWyblzfl4IY+v6jRZGTyJWRT5xnzTN2rdoLNSxlQqI1Q3Tl73E3sBw6X+lcP+PD/Mi4dotMlqOEnVzuqbcF5+aK12cwbMvU67FF91TJTlLbluui+cvYHzfHyMnTcvvK967YcmpL6mjsy+0Oo5XCu97lLwp3jv8AWXe7Gov/AONTXZ+/FP7TCGBh1vevEoi/ONaQEJ2c/KuTYr8nItWMlyU+s/n8PUsYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfnsAAAAAAAAAAAAAAAAc0tOwZScpYeO23u26o8/qOkAYVVV01quqEa4LpGK2S+QzAA8aUouMkmnyafic35MwP2HG/wo/gdQA8jFQioxSjFLZJLkkegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw36Pp2RJytxK3J9XHeO/zGqPZ/S4vdYi+Wcn95JgDCqquitV01xrgukYrZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA11X1X8XdWRnwPaXC99mZyipwcZLeMls15ogcTTcvE1OyNP83a2cm+Ti/vQE+cdGp42RkvHrlJ2Lfk4+RXJSxIycXkZm6e3wV//AKOap1q9uc7Yw5+9FLi+0C8GMrIQe0pxi/VlXw1jXZdUIZGVxOS24orb7TdqmTVk5Uo24lzdTcFKE9t9n8QFgd9K62wXxyR48rHXW+pf86KnJY3C9sTJT25Nz/8A1NWL3Pvd7RZb024JbbfUBb3m4q65NP8AiI3lSUsNf/x97/8AuP8AA782y3PwIZUJSxo0uSkm22+m3RASj1DFWSsfvf5Vy4eHZ9TqKhDCstxJZ3tMNodd2+JNdF9hvxFc9Oy8jv5SjwcOzb3T3QFmnZCtb2TjFecnsYUZNGQ5qm2NnA9pcL6FZ07Sp6jVK538CUuHmt30T+8l8fT6NKqtunkT2ceGTa5Lf0AkbrYUVSttlwwjzb23McbJpy6+8onxx3232a5/KVfIpxY0TdepStklyg4NbmGHVjTpbuzpUS3+Cot/KBZ5Z+NHK9mlbtdulw8L8fXbY2U5NF85wqtjOUPhJPoVeV1C1muzvVOmPAnNp80opPl8h0Y7w8bVHfTmxhT1UeGTb36rp0AsE8miuTjO6uMl4Skkzz2zG/aKfpormrVK7Xu6b2U5Qjv5bpGjUsTHw7FVVc7bF8Llyj/qBavbMb9op+mh7ZjftFP00VGuGE613l1yn4qNaa+09yKKI40LseyySlNwanFLok/vAuUZRnFSjJSi+jT3TPSA9qzqMLEWHTKcXVu2q3LmYflHWf2Wf+CwJvLyqsOpWXNqLe3Jb8zFZ+M8WOS7FGqW+zlyb57dCu6hlajfj8OVRKFaknu63Hn8Zpi8zIwYURxpWVQbcZRrba58+YFwjKM4qUWnFrdNeJy5mo42FOMb5NSkt0kt+RE6dl5eFW45OPZDGrg3zg+vxsjLMiGXmSuy5TUZeFaTa8lzAuEb6pRUu8it1vs2e99V/aQ+kio7ab+vl/Qj+I2039fL+hH8QLcra29lZD6SPZW1xmoSnFSfRN82VrTcTCy8pRpsyFKC4/fjFLk16jU7LsjW37PFznTsopLfpz+0Ccr1HHszHixlLvU2ttuXI6ynU2Zi1KVlcG8reW8eHx8eRJ9/qM8TK9shKEFU3F8O3PdAS+Vl0YkYyyJ8Ck9lyb+wyWVQ6YW97GNc/guT23+cqtknLRa3Jtvv5dX6I6tS/QeD/vwAn/bMb9op+mh7ZjftFP00ViWDj16dXk25ElOxbxrSXNnLjxx3xe0WWR8uCKf3gXH2zG/aKfpozruqt37qyE9uvDJPYqcMfDtjYqbrnOMJTSlBJPZb+ZJdl/gZPxx+8CWtzcem+NNlqjZLbaL9TzLzKMKEZXy2Unsklu2V+d/f69O9Qdkam3GMer4Vy/E5bcpZ2W7M2c4w8FBb7eiAt2PdDIpjbXvwy5rdbGwpWQsNQXs8rpS358aSSJbQs7Hoqhi/yjtsnv8AB5JvZefoBOO2tPZ2RTXqO+q/tIfSRW9bwK8eyd7yN52zbVfB9+5zewKvCjk5Nsq+N+5FQ4m/rWwFujOM9+GSlt5Pc1ZOZRiKLvsUOLpyb3IKdEtO0t5GLlOSunHaUY8OySl6mrUrJ26VgTsk5TfHu348wLPXONlcZwe8ZJNPzRjdfVjw47pqEd9t2cTy/YtFx7uDj2rgtt9vBHBqeZ7dokbu77v+W22338GBN+00+zPIVidSW/EuZji5uPmKTx7OPh68mtvnIzH/AKKv9yX+Zmns7bCjHy7bJcMI8Lb+cCwGnIyqMbh7+xQ4nstzn0/VKc9yjFOFi58L8V5kRrNjzdWrxYS92LUPlfX/AH6AWSMozipQkpRfRp7pnPVqGLdf3FV0Z2bN7L8SFlr1uPJ0wor4a3wLm+i5EZHKcc72qMFF8fGop8t/wAuxqsyseqXDbfVCXlKaTIXG1+67JqqdNaU5qLa38WYa1i326mrIY9lsFGO/Cns/QCa9uxP2qj/EQ9uxP2qj/ERWM3Hm2rK9Osx64r3t92n8rMbYxzdvYcCVfB8Pgk5779Pi6MC0+3Yn7VR/iI3xalFSi001umvEqmXi2XKPcaXbRtvv1lv9RMagp19ntucZRrgn4Nc0BKAhOzMpSqyHKTfNdX8ZNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzajG+WFZHF3757cOz28Vv8AUQOn352TlWY7yZqfC0t30aLOVXT8ivF1e6217RXEvje4HtuTkVWzrnqcuKEnF8pdUc1bjVa7a83hse/vKD3MreL8r38Pdb97P/i7cPV+fI6P5b/+s/6YGWLZlZdyqq1KTm1vzTR2do77aYY/c2zr3ct+CTW/Qj9C/TC326S+D0+Q7+0UI3OiHe1wlHdtTltyf/sBwOyEqN5azdxOPOtxn126b7nPgSjHvOLPnidPgRk+Lr5eX3nR3+TGng9pxHFR22Sjvt8xz4FttXed1bTXvtv3iXPr03QGyzJtrya40ajffB7by3lHnv02bJjWqLbZw4c2vHrcWnGdjipfJ4kPZGd+RC27Jxt47L3ZJct/REr2gePLGounxT5+4oy23T6vp6ICDsplVesVZNcoSkt5Rn7nxv4jt9lsoxLlHOptrUG3XXbv4rnscllEFm01xrmoWcD4XJOXP1N9UsSOFmSgpwtaUFGUt902vTryA00RzYYVmRRbOFEJbS4Ztc+Xh8qJDSKsjL4rMuyduI01JTsbW62fQwoi12XyW/61if1xN2BTZkdnba6W+NzeyT236cgI6dlD1GU6sfix4vbgiuqMcW2qGVN24vfQae0EtmuYxXOi+yKy1jtcnLnz5+gx7JxzLZLMVTe+9vP3uf39QNtkKJapj7U93TY4Nwb6JvZnVjrFyNWnj1YdU6U/hbvdJdX85o1qcZWYso3KyapjxSXz7/Wdmmyx9KpqnkvaeSt+Jc+GPLb7QOXVdvy/73Eo8UN+Hr0XQ5LvZY8Pskr5WqW/FJJHdn/0mr/iV/cadQyMS29w9nnSq21F17JS59dtvvA05duVPu45kJ1w9K+Hc26hkYtuFRXiVzhGuT34l1bX1mqNkEtqs66CfVTi0vqbOzWHQ9PxZY/C4tveUY7cT2SbA6rsm7E7P4tlE+CT4Vvsny2fmcqytZeJ7V3q7nbfi2h57dNjquxrsvs/i10Q45Lhe26XLZ+ZyrE1lYvsvB/I7bcO8Pj69QNjvuzez2RZfPjnCxbPZLl7vl8bOarO7jQnTCW1lljjy8FstztpolhaDk15q7tzk+Fbp7vZbdPVEZpOEs3MUJPaEVxS9V5ATml49t+kuGXOclauSl1jHw/Ehc+uGLrDhVLuYwcdpbb8PJcydxtYxrHZCSdXdJt7rdbJ7EJqeYtQtlKjHShDnKah7z8N2/IDf7ZP/wAZ/wClL8B7ZP8A8Z/6UvwOfAdtlarpqw5Nf2kVxP5z2/Jsx5cM6MBy8o1xl9gG7s3+kbOe/wDJP7Ub8jB1V5tt1MtlKT4WpJPh35I26HK+22Vs8Wqqpw2U4VqLb3X1HFqdHtXaB08XDx8K323290DlprzHqUq65tZW8t5cXj48zvso1SvHvll2OVXdvdOe5wU6f3upywu922lJcfD5em5swq3D2+te840yXTrzQGE/0JX/AB5f5UdepfoPB/34HLZFx0WtSTT7+XVeiOrUv0Hg/wC/ADk/7F3MHbK9293twpck/Pd+AhbnRw3GEJ9z04+76fKdVt9FWm49VmNxuyrnZHZSj7z8dmccJ0R515ORVJdPd3XzpoDowcjEqw761XbLJsrkuLZNLkzPSbpY+mZ9sPhJRS9N91udGFKmenZjd0b8ju5vicXult5tGHZ+mORiZlMuSmorfy6gc3Z/9KQ/dl9hh/2nTJz4q6d5vpNxm18m/LqbO6q/K+VXJuFcYzW8VvwpI1VQpcmsaqVslzdt2yjH12/Fge4UMvJyLMjHoqsl4p8Oy39Gzox6smzWqnbXVGcGnKMJRWyXomcMJTrynDFva7zaHHtw779fk3JDQKafbLFcn7RW/dTfz/KBlqOk5uRn2WQ2nBv3XKS5LyOavHzNQnLH9shPhXE4ylLZbcvL1JHUKNVnm2SxZyVL24UppeC3+sh8GvMnlTjiSauSfE1JLlut/r2A334+XjaVKF8VGvvVwpvnvz3+QZ36H0//AJ/tOnNqzI6Nw5fFO3v01z4uW3p8pzZ6cdI09NNP3+T+MCR1H+jdH7lf2Ij5f0bj/H+4kNR/o3R+5X9iI+X9G4/x/uAxxtOtWBLN44d265e7z38UcuLTflS9no3ak92vDl4slqMqj83nj94u+cJ+549W/sMuy/wcn44/eB2Qx6tG06y2MeOxR5y25t+HyFe0+TnqlEpPdu1Nv5SVwM67VJXYd6i4ShL30ua8jlsphR2irqrW0YTrS+ZAder5+Vh6jWlPajlLhS6+aJm26NeNO5NOMYOSfnyIztHju3DhbFbyrl4Lwf8ArscuTk2V9na6rYyhZN8G0ls3Fc9/m2QGeg5eZk5Mo2WudUY7viW/Pw5mGs4lGPb39llz76T5R25Hb2fx+50/vH8K18XydEc/af8A4OP+8wIefs7g+D2ly25b7bGFCrXF3yuXlwHbjrK7iHAtQ4duXdyfD8ht4c3y1P6bA5aYYtt9dXFkxc5KK325bsm87GWLoNtEZOSiur6/C3ISvjWsUd73vH3sN+9e8uqLNqHcexWLJk41NbNrqBG9mF/2a9/319hNkdorw/Z5xw5TcVLeSn1Tf/sSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtY+i35GbY8j+TrjN7yX9b4iygCr04scjX7YX1ylVKyxvqvPxNmbViYmVKn8mO1LZxlG2S3LIYucFLhcoqXlvzAr2g4l3t7vlVKuuKfVNdfBGeZ7TkXuVulqzh92Mve6b+jLAAKvLHucWlpCTa6py5fWasfCyauLvNOldvttxbrb5i2gCsdxb/4Mvnl+J1W4GRqONXOyPs8qfdjU09mv9/YToArGPj52VqlN91E4cMottw4UkjZrmFYr4vHx13c5btw5tyfmWMARWbivH7Pyx4JylFR32XV8SbMuz8JQ07acXF8b5NbEmAKjTXdLNv7rFhe+J7qa325/GjOvBza7p2PT4TUt/ckvdXPw5lrAFar0G6eLO2b4bdt4V/czlx8bKysqnHshZw1vb3o/BW/Mt4Aq+rwu/LblTGTmnBxaW/PZbG2U9dmtpQlJeTrg/uLGAKpbh6lb8PFXxquC+xGrKqz4Y9VV9clXBvgXCuXn0LgAK9ZVqEsTDWG7Uu62koy4eZq/JOqXP+Vsa38Z27/iWYAVf8jZryY40pb1/D41zivP5Rl4eRpOWrsXide3KW2+3mmWdtRW7aS82IyjNbxkpfEwIHQMOfdX32V795Hhip9JefydDTTk51SnRhYKq2e0moOT39WyygCtV6Dl5FjnkSrp3e72Sf1LkYz0TOxp8dKrt25rbb7GWcAQWLl6vLJrpsqSUnzc69kl8mxutwMiWuxy1Fd0mue/PpsS4Aqrqus1vIjQ5Qscp8Mk9ufPxO/TtOysKOTkWOKtdb4Unvz68ybAFRycnP1LgrnU5bPkow25nfrOPOrSsOpRblDZPbnz25k+AKxiz1mGPCOPGaqS933I/eeWUarYtp40ZfHVD8C0ACpRxtTxq7uGmUITi1PaK5okezMZRhkcUWuceq+MnABWtrYa3lWV18TSm0pJ7Pl0NduJnW4crrYKumGzVMVw78/L8S0gCqY9d2dnY6hj91XXsvdT2ST333fiSWZpN09UryMafdqT3nL9V+e3juTEpRgt5SUfjYTUlummvNAV/IWsyyrY1O3u+NqL5Jbb8jnq0rVK5udadcpLm1Yk/qZaQBDYtGfhYeXbZPjtaUo7y4um+5E5N+dqUoQnVKTjvsow26lvAEFqmDmTx8SihSnGNajOKfLdbc2ctXZ/Ln/xJV1ryb3f1FnAEJV2fVUZvv8Ajm4Silw7LdrYj8evVMJWwposXHyltDf5mWsAQ+gafbjKy6+PBKa4YxfVI48uL/OeL2e3eQ+xFkAFa/8Ajv8A531GnIxNVyuHv67J8PTfbkWsAVmEdbhBRirVGK2SW3JGWqSz85qDw5qNcnwuMXzLIAKjHDuUUpabZJrq/e5nvslv/hdn/wCRbQBUIYuXXkwurwrY8ElJR4W1yJ+uE9TwJwzaXS3Lklya26PmSAA49O06vT4TUJSlKbW7fodgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACp4Ht+fbKuvNti4x4veskWwp2l5duHfOdVLtbjs1z5cwOyGbnabnqnKtdsd1xJvfdeaZ7qH9JKf36/tR5Vi5eq56yMip1V7rdtbcl4I91D+klP79f2oCxylGEXKUlGK6tvZGuvJotlw1X1zl5Rmmyv69kOzUI485ONMNuLb16s5MyeFB1T092wnF83L7QLdOyFceKycYrzk9jCvKx7ZcNV9U5eUZpsjNQlh34uJbnWSjvDjUIdZbpENmzxFOueBG6trq5fU0BcJSUYuUmkl1bZqhl405qMMiqUn0SmmyG16d1uBiWLfgkuKe3TdpbfeYaZHS7bKeFzryItNKT5Sf2AWGUowi5TkoxXVt7JGuvJoue1V1c35RkmV7XMjvdTVFspRor234fVbt/WcuXZh1zqs052QnHrxfaBcA+S3ZhRZ3tFdjW3HFS+dEJ2kybIuvFg2oyXFLbx58kBL+2YvFw+007+XeI3SlGEXKTUUurb2Iirs9jqmPHOx27c5J8t/iOTWrLMrVK8JS4YbxW3hu/H6wJ2GXjTkowyKpSfgpps2TnGuLlOSjFdW3siB1PRqMXBldTOfFDbfifXnsPaZ5PZi52PeUJKG78feX4gTbycdQ43fUob7cXGttzKF1VkHOFkJQXWSkmkV7R9KqzcV2XyntxNRjF7bepjpm+HrUsXicq5OUJJ+PkBYq76rW1XbCbXVRkmLL6qmlZbCDfRSkkV7BT07XnQ3tCbcV6p819xnOP5R7Rbda6nz+KP8Ar9oFiIrV9VeHwRx+7nOW6lu9+HbbwRKlZ7Q4dePdC2DlxXOUpbv4unzgSedfC/RbZRshOXdpy4Xvs+Ry9nLa6sO6Vs4wjxrnJ7LoZTwasTRL51OTdtcXLif+/M49F02rOqsldKfDGWyjF7c/MCyV213R4qrIzj5xe6FltdUeK2yMF5yexXNBlKnVbKU94tST9dvE0W5NWVqc7M2U+5i2lGPl4IC1VXVXJuqyFiXVxkmZlTpyKcfVqp4LmqZNJxl5Pqi2AQ2dg99q0LvbIVvePuOW0l8XxkrZfTVJRsthCT57Skkyv6h/SSn9+v7UY9pN/wApVbde6X2sCwyyceE+CV9UZ/quaTPbcimlpW21179OKSRXtZ0urDxq7oTnKbnwycnvu9m9/qMq9NhkaRLMttnK7gck2+SUfD6gLFGUZxUoyUovo090ap5eNCXDPIqi/JzSIns1a/Zr4yltCDT5vpv1+w45R0euLrXtF09tuOK8fQCzxlGcVKMlKL6NPdGFuRRS0rbq4N+EpJEB2fyZ1V5UXzjCHeJeqNWlYS1TIutyZyajs3s+bb/9gLG8mhNJ3VpvouJczZKSjFyk0kurbKnl4qw9WrpjJygpRcd/BN9Dq7Q5Mp5kMZycaopOW3i34gT1eTj2y4a765y8ozTZtKfmSwYxrlgO2NkXzcvt+MtWFc78Om2XwpwTfx+IEX2n/m1P77+w6dMyKadLx1bdXW3HlxSS8Tm7T/zan99/YctelVWaM8qU5u1Qclz5JLw+oCxxlGcVKLUovo099zXZk0Uva26uD8pSSILR8udGlZck9+65xXk2cWHPCm7LNQds7JPlt9oFujKM4qUJKUX0ae6Zrjk0STcb63st3tNckQPZ6/hzbceMm6pJuO/o+vzHFpOH7dkupzcIKPFLbq1v0At0LIWQU4TjKD6ST3Rrjl4058EciqUn/VU02QWst4OLRgUzl3ezk2+rW/Q48j8neyRWO7faFtvKXR+YFvDaSbb2S8Ti0e+WRptU5tua3i2/HYz1KNMsKyORZ3db23l8oGftmLxcPtNPF5ca3N5Usp6Y8eSxYX96uk30+U7Kc22vs5KSk+NT7uMvFICceVjxs7t31Ke+3C5rf5j2N9UrHXG2DmusVJb/ADEDpWj1ZeF398p7zb4eF9NuX2mnR4Sq1x1yfFKLnFvzaAslmRTS9rbq4fvSSParqrlvVZCaXjGSZCaj+S1n2TyZWW2ya3hDpHZJHFp1sadah7Nxxqm+Hhn12a8QJO3BUtbjf7ZBbST7ty974tiUlfTCfBO2uMv1XJJlfyP6Ur9+H+VGvWk5a1wxfC3wpPyAsbycdWd276lPfbh41v8AMbSs6zpdWFj121Sk95cMuJ9Xt1+onNMslbp1E5veTjzYDUpyhp98oScZKD2aezRxdnbrbqLpW2zsakkuKTe3I78/np+T/Cl9jI/syl7BY/F2tfUgJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACv8AZ7GvpzLJW02Vp17Jyi14osAAEBnY98+0FVsabJVqcG5KLa6rxJ8AQOtYN/tkczHr7zpxR235r08jyOfbbtCvSY8b6vg3XzbfeT4Ar+t410M6nIrpdlUVFKKW6Wz6beRo1KWbqEKprCshXHdRiotvw59CzgCLvyr8LDxFHFldB17WR2e8eS/1IqWPbqOdGePhvGhy4ntsl6lpAEBrGDfDOWbRX3q5OUdt9mvTyEM625xhXpMVJ9ZOO6X1E+APEkkklsl0SIjXtPsylC+hOU4LZxXivQmABAU6tqHDGr2Nys6cTi/sM9ZwMj2uGbixc5LbdLm010exOACt5Obn6jT7NHElHia4mk+fz9DqycR4XZy2qT3nupS28+JE0cer1WX6bdXVFynLbZL40BB6bnZeHiPusfvapSez2fJ/IdWjYWRZmyzsmLh1a3Wzbfp5czt0LHtxsFwug4S429n5bIkQIPtHQ49zlw5Sg+F/avvM+zmO449mTP4Vr2Tfkv8AX7DluxtV1KcK8mChCL335JfH6lgoqjRTCqC2jBbIDMhu0eNbfVTZVBzVblxKK3fPb8CZAEHXfk5mkZFU8eUZVwjGO0XvL/ext7O02049qtrnW3PkpRa35EuAK7peNfXrUrJ0WRhvP3nBpfOYXYmRpuoTuhj9/TJvbeO62fn5FlAEPhZU8rLritNjVVz4puO+3Llz2XjsTAAEBnY98+0FVsabJVqcG5KLa6rxPNexr7tRqlVTZOKrSbjFtdWWAARfaGqy7BhGqudklYntGLb22Z7jVWR7PSqdclZ3U1wNc9+fgSYArumYeQ9OzqnVOuc0uFTi479TDTLszFrnjVYUnbKXKck1w/HyLKAK7oWHcrMiF9NlcZ18O8otdTTjPO0fJsgseVily6PZ+TTRaCDd2t0uUFSrFvyk0ny+RgRuTLIt1WqeRDhsnKL4F4LfkiR1vAvlkwy8eDsa24opbvddOXiZYGl5M832zPfvp8Sjvu2/AmwK+tQtsioV6THvH48HL5tvvJ+MVGKUUkl0SPQBEdoqbbsepVVzsanzUYt7cjbRVYuz7qcJKzuZLha577PwJIAQGj4Ns8PMpvrnV3iSTlFrzObGeRpkp1X4HfRb3TcfsezLQAI7S7Z5ErLJ4cceK24Pd2b678/mODs9jX05lkrabK069k5Ra8UWAARGvafZlQhdRFynDk4rxRyV6haoKuWkqVq5b8HV/FsWIAasVNY1fFXGuTinKMVsk9uZwa/jXZGHHuYuXBLdxXVrYlABWndmX6X7JVhSjGEUpySfvbNdFt1N+Jp9t2hW0ShKu3vHKKmtt+SJ405atli2Kh7W7e78YEBgZeoYdbxY4kpvd8PFF8v9DDRVNa21N7yXHxNeZ1yv1yUO67hJvlxpLf599jp0fS5YXFdc07prbZc9kBGUrJ03U7JyxJXOW6WyfPd9U9jKunNs1uu+/HnHecW2ovhS28yygCAvx732kVqpsdfHF8ai9ui8TDVMa+zWo2QoslDeHvKDa+csQAi+0NVl2DCNVc7JKxPaMW3tszp0qEq9NohOLjJR5prZrmdYA05k7IYlsqYd5Yo8o7b7nJot+RfRN5FShtL3Wo8O/wAhIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABArtI30w2//ALn+hPFW0DIqx8uyV1kYRcNk38aAlMLXacm6NVlbqlJ7Ld7rcwy9SyKdZrxYcPdylBPdc+fUi8+UMzWF7J73E0t0tt35nRqH9JKf36/tQFkBFatqdmPbDGxYqV09ue2+2/RfGct2bqmnTrnmShbXPwSX3LqBPg4M63MnXT+T0n3i4nKS6Llt1+Mjr83VNNtreXOFsJ+CS5+fRICwAi9X1OeJj0yoS4rlupPwXL8TXiPWJzptstrnTJpyS4enzATAInVdTtoyI4mJFO6W27a3236I5rc3U9NtreZKFtc/BJfL0XUCfNeRkVY1feXTUI77bszjJTipRe6a3TIDtF7X/W29l3W3T4W3z+YE5j3wyKY21PeEuj22NhCaD7dwV8e3snC+Hp13+fzMpflu1ynCVdUd3tFpbv59wJkhdM1TIytRlRbwcCUui8jZoupW5crKchJ2QW/EltuiM0iyFOqW2WSUYxjNtsC0gg8DOztRzpOufd40Xu/dT2Xlv5nuTqWVkZ7xNP4U4tpzaT326/IBNghMbUMzG1GOJnuM+NpKSS8enQmwAI/UJai7414KjGHDvKckuvlzOBahn4GdCnOlCyE9uaS6b7brYCfAIvWtSswYwhSlxz3fE1vsgJQERifld202W21zpk05JcPJfMY6rq1tOQsXDinbyTe2/N+CQEyCJwvyvHKr9radL34tlHlye3T1OO7V82vUraYNTipyjGHCufggLECIhm5mFg23ahHeziSrjyW+69Dmjk6xZiyzIzgqlz4eFdPmAsAIzG1eFmmTyrYpSr5SivF+GxxVZWr5lU8miUIVrfaOy5/FugLACJwtUnlaZk2NKN9MG90uT5PZ/UcWHqGqZkbIUcM5LZubSXCgLGCD0nU8qzOeLltSk91vsk018R5manl2ai8PDcK2pcO8tub+UCdIbRdTyM3JnXdw8MYbrZbeKOvT46hGyazpRnHb3ZR26/IV7SJ5Ub5xw4KVsobbvpFb9QLeCAw9SzqtSji5rUuKXC1sls30fI6NW1WzHujjYsU7Xtu9t9t+iS8wJcxssjVXKc5KMYrdt+BAXZes4UY3ZDjKtvmmo/cbtRyr8zS4XYuyplGXfJ7cunL7QJTFy6ctTdE+NReze2xvKzoXtvGvZ9u47xd50LMBDZWp5FWswxY8PdOcE91z57bkyVfVZyr1/jjHilGUGo+b2XI25Wfq2FZCeQ4KM3uopJr4vMCxgj87VI42BVfGKc7knCL9VvzI+WTrFeKsyU4d1yfA4rfb5vvAsAIjJ1SyWjwy6GoWOSjJbb7PxOTGz9Vy4RdMd4wfvzUVz5+vp5AWIELnankzzvYsBLjT2cmt+fj1MYahnYOdCjPlCyE9veSXL15ATgBwajLUHZCGDGKTTcpyS5fOB3gr9moajp2TCObKFkJc+SXT5Edms6nLChCulJ2zW+78EBKAr08vWcbGd92zhJdXGO8fJ8ju0jMyMrT7bbGp2Rk1Hlt4JpcgJMxtlKFU5RjxSUW1HzfkQs3riqlc51wUVxOG0d9vmOjTdSsy8C+c0lbVF80uT5cn9QGWk6hkZsrVfSoKPSSTXycySInQs7Ize/8AaJqXBw7ckuu/4HBhapqeTZKqrhsm48t4pKPqBZSN1PVvyfbCHc95xR3349tvqOHE1POp1KOLmtS4pKLWyWzfRrYx7TR3yaPWLX1gWFbuKbWz8V5HoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKnomHTm5M4XpuKhutntz3RbDmxdPxcSbnRVwSa2b4m+XysBiafjYb3pqSk/6ze7ITUP6SU/v1/aiyHNZgY1uTHInVvbFpqXE/Dp4gQGt18OscVjcIT4XxLwXRmyeBgutSlqnEvBcm/m3J7JxaMuHBfWppdPNHLXomDCal3Tlt4SkwIzVrbKb8fAV0q6IQjGUly38N38xyapTh0OuOLc7pPfjlxJr06Fly8DHzVHv4buPRp7M1fkfB7qNbo3Se/wnv9oGjIpw78DEqy7VVJ1p1y328Fv9xEcdmmZ0IYuUroNp7RfJ+jRYsjT8bJqrrtrbjWtobSa2X+0YY2lYeLYrK6t5ro5PfYCD1ivh1tu2Uq4T4XxpdFslv9Rtnp+C4py1Tj36JbN/NuT2TiUZcOG+tTS6PxXynLVouDXNTVTk104pMDtpr7qmFae/BFR389iN7Sfo6P8AEX2MlTC6mu+qVdsVKEuqYEVpmbVDR+CE4u+uucuDx5bsjsJUZqtt1HMmmnyi57b/AO/QnMXS8XFtdlUHxNbc5b8jFaNgq3vFT478O72+YCJ7N7flK3h6d29vnRxY2NLLyr6oPaW0mvXZ9C04+BjY1sraauGcls3xN/azyjTsXHud1NXDY9+fE394EZ2ezYxTwrEoTTbjy2380/UjK6YR1KynJuePza4l5/gWWemYk8jv5Vfyu/FxKTXPz5M9ytOxcx8V1Scv1k9mBEVabhyy6lHUO9s33iltLpz+4sJx4ul4mLYrKq3xrpJyb2OwCuahkTyNYeNdfKjHi9uT2XTqcOfXi1ZcYYljsikuKTe/PfzLNl6bi5k1O6v31y4k9tzF6RgtQToXuLZbSa+8DtI7VacLI4Ksq1VWbNwk3t/oSJzZeBj5vC74NuPRptbAV2udum6hCrGyVfBtbqL5Pd9NvM2Xz9i7Qu26PucfF08Guv8AvyJvG0vExZ8dVXvrpKT32NuVh0ZcVG+tS26Po18oGNWoYl1sK6roznPol8W5B4q37US3/tJ/YyYxtKxMW5W1QfGujcm9jZDT8WGV7TGra7dvi4n1fXluBwdpa5Swq5xW6hPn6boj8TExL8aMp6j3UtvehJ7bfWWecYzi4zipRfJp+JHy0PAlJvupL0UnsBG3YVdei3SxbXdBzUm9tunJ/ac+n42NfRvZnuiafODey+TmWenHqop7qqCjX+r1OOzRMGybl3Tjv4Rk0gOPFw8ejAzrMfId0XVKDe2yTS3+887L/Ayfjj95LVYePTjSx669qp78S3fPdbMYuFj4aksevg4uvNvf5wILH/pS/wB+f+VnTqGFgZd9k45UKb4vaak9k38TJKOBjRyvaY1bXbt8XE/H032NV+kYeRbK2dcuOT3bUnzAjdAyr3lTxpWOypRbTb322fh6Grsz/Pbf4f3onsXDoxIONFajv1fVsxxdPxcSbnRVwSa2b4m+XysCDz/6TV/xK/uGpP2XtBG+xPgcoy39EkvuJyzT8WzJWTOre1NNS4n1XTluZ5OLTlQ4L61NLp5oCL1rUcW3T5VVWxsnNrZLw577mOLTOvs1dxJ7zjKaXp/tHZVouDVNSVTk104pNo72k4uLSaa22AgezmTTVXZVOxRnOa4U/Enzgr0fCqvjdCtqUXxJcT2TO8CtZ/8ASav+JX9x09p/+Dj/ALzJOzT8WzJWTOre1NNS4n1XTluZZWHRmKKyK+NR5rm19gFf1OEnpGn2bNxjFpv49tvsPacPDuxozlqfDuucJNbr023LCsalY6x+7TqS24Xz5HH+Q8Di37qW3lxvYCPzMerH0BKm12QlapKTW3p9x3dn/wBFx/eZ12YWPZjRx51p1R6RTa2M8fHqxqlVTHhgnvtu39oFXvqitauhkWSojKyT40um/NHV+TcKVsI/lLvJye0UtpfeTWXgY2Zt39ak10kuTNWPpOHj2KyFbc1zTlJvYDuK9rGTZZqkcWdzpoXCm09uviywnLl6djZklK6veS5KSez2ArOqVYlNsYYlrt5e9Jy35/GdOuxcMnFtcd491FfHs/8AUmXo+A4Rg6N1Hp7z/Ew1S3DpqqqzK3KuW6i1/V22A59U1PFt02cKrFOdiSUV1XxnNp188fs9lW1Paas5Py34UaMu3TaqJ14MJTsny45b8l6bkvo+G6tM7rIh/wAVuUovyfL7gIeivFvwrMjMy5u7ntDj57+HLqbtA/muofuL7JErXo2DXY5qrd+Ccm0jdj4GNjQsjTVwqxbSXE3v879QInst/wDNf8n3mnsz/Pbf4f3oncXCx8Pi9nr4OPbi95vfb4/jPMXT8XEm50VcEmtm+Jvl8rAhNQ/pJT+/X9qOzW1hSvoWTbOE0uXCt+W/id9mBjW5McidW9sWmpcT8OnieZen42ZOM76+KUeSabXLyA6U1JJp7p80z08SUUklslySPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABruoqvjw3Vxml04lvsbABz1YOLTLirx64y8+HmjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9k="; public static Image ScaleByPercent(Image imgPhoto, int Percent) { //float nPercent = ((float)Percent / 100); //int sourceWidth = imgPhoto.Width; //int sourceHeight = imgPhoto.Height; int destWidth = Percent; //(int)(sourceWidth * nPercent); int destHeight = Percent;//(int)(sourceHeight * nPercent); Bitmap bmPhoto = new Bitmap(destWidth, destHeight); bmPhoto.SetResolution(imgPhoto.HorizontalResolution, imgPhoto.VerticalResolution); Graphics grPhoto = Graphics.FromImage(bmPhoto); grPhoto.InterpolationMode = InterpolationMode.HighQualityBicubic; grPhoto.DrawImage(imgPhoto, 0, 0, destWidth, destHeight); grPhoto.Dispose(); return bmPhoto; } } }